New Hubble data explains lack of dark matter Dateway

New data from the NASA / ESA Hubble Space Telescope provides further evidence of tidal disturbance in the NGC 1052-DF4 galaxy.

This result explains an earlier discovery that this galaxy is lacking most of its dark matter. By studying the distribution of light and globular clusters in the galaxy, astronomers have concluded that the forces of gravity from neighboring galaxy NGC 1035 have stripped dark matter of NGC 1052-DF4 and are now tearing the galaxy apart.

In 2018, an international team of researchers using the NASA / ESA Hubble Space Telescope and several other observatories discovered, for the first time, a galaxy in our cosmic neighborhood that lacks most of its dark matter. This discovery of the galaxy NGC 1052-DF2 came as a surprise to astronomers, as it was understood that dark matter (DM) is a key constituent in current models of galaxy formation and evolution. In fact, without the presence of DM, the primordial gas would not have enough gravimetric attraction to start collapsing and forming new galaxies. A year later, another galaxy lacking in dark matter was discovered, NGC 1052-DF4, which sparked intense debate among astronomers about the nature of these objects.

Now, new Hubble data has been used to explain the reason for the absence of dark matter in NGC 1052-DF4, which resides 45 million light years away. Mireia Montes from the University of New South Wales in Australia led an international team of astronomers to study the galaxy using deep optical imagery. They found that the missing dark matter could be explained by the effects of tidal disturbance. The forces of gravity from the nearby massive galaxy NGC 1035 tear apart NGC 1052-DF4. In this process, dark matter is removed, while the stars feel the effects of interacting with another galaxy at a later stage.

Until now, the removal of dark matter in this way has remained hidden from astronomers as it can only be observed using extremely deep images which can reveal extremely faint features. “We used Hubble in two ways to find that NGC 1052-DF4 is interacting,” Montes explained. “This includes studying the light of the galaxy and the distribution of globular clusters in the galaxy.”

Thanks to the high resolution of Hubble, astronomers were able to identify the population of globular clusters in the galaxy. The 10.4-meter Gran Telescopio Canarias (GTC) telescope and the IAC80 telescope in the Canary Islands, Spain were also used to complement Hubble’s observations by further studying the data.

“It is not enough to spend a lot of time observing the object, but careful processing of the data is vital,” explained Raúl Infante-Sainz, team member at the Instituto de Astrofísica de Canarias in Spain. “So it was important that we didn’t use a single telescope / instrument, but several (both on the ground and in space) to conduct this research. With the high resolution of Hubble we can identify the globular clusters, then with GTC photometry we get the physical properties. “

Visit our store now before the sale ends!

Globular clusters are believed to form in the episodes of intense star formation that shaped galaxies. Their compact dimensions and luminosity make them easily observable and they are therefore good tracers of the properties of their host galaxy. In this way, by studying and characterizing the spatial distribution of clusters in NGC 1052-DF4, astronomers can develop insight into the current state of the galaxy itself. The alignment of these clusters suggests that they are “stripped” of their host galaxy, supporting the conclusion that a tidal disturbance is occurring.

While studying the light of the galaxy, astronomers also found evidence of tidal tails, which are formed of material moving away from NGC1052-DF4 – this further supports the conclusion that this is a disruptive event. Further analysis concluded that the central parts of the galaxy remain intact and that only ∼ 7% of the galaxy’s stellar mass is hosted in these tidal tails. This means that dark matter, which is less concentrated than stars, was previously and preferentially cleared from the galaxy, and now the outer stellar component is starting to be as well.

“This result is a good indicator that, as the dark matter in the galaxy has evaporated from the system, the stars are only beginning to suffer from the disturbance mechanism,” said Ignacio Trujillo, member of the team. ‘Instituto de Astrofísica de Canarias in Spain. “Over time, NGC1052-DF4 will be cannibalized by the large system around NGC1035, with at least some of their stars floating freely in deep space.”

Finding evidence to support the tidal disturbance mechanism as an explanation for the galaxy’s missing dark matter has not only solved an astronomical conundrum, but also brought a sigh of relief to astronomers. Without it, scientists would be faced with the need to rethink our understanding of the laws of gravity.

“This discovery reconciles existing knowledge about how galaxies form and evolve with the most favorable cosmological model,” Montes added.

These results were published in the Astrophysics Journal.

#Hubble #data #explains #lack #dark #matter #News

Why is it called “Black Friday”?

Why people hate your Thanksgiving dinner – Dateway